

Preliminary

Description

The SSTX4915 is a low power ASK transmitter IC intended for applications in the North American and European VHF/UHF bands. The integrated voltage-controlled oscillator (VCO), phase/frequency detector, prescaler, and reference oscillator require only the addition of an external crystal to provide a complete phase-locked loop (PLL). In addition to the standard power-down mode, the chip also includes an automatic lock-detect feature that disables the transmitter output when the PLL is out-of-lock.

Features

Output frequency range: 100 – 960 MHz

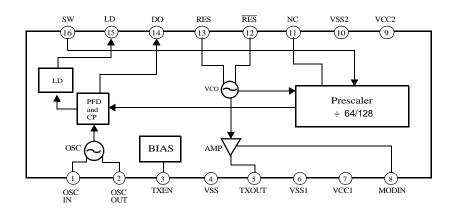
Supply voltage range: 2.2 – 3.6 V

Low current consumption with power down capability

On-chip VCO with integrated PLL (÷ 64/128) dual modulus prescaler

Out-of-lock inhibit circuit

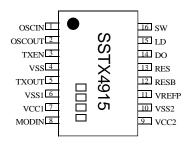
SSOP-16 package (0.64 mm pitch)


Applications

Wireless mouse

Car alarm and home security systems

Remote control systems


Block Diagram

Pin Descriptions

Number	Name	Description			
1	OSCI ^N	This pin is connected directly to the base of the reference oscillator transistor. The reference oscillator uses a modified Colpitts configuration.			
2	OSCOUT	This pin is connected directly to the emitter of the reference oscillator transistor.			
3	TXEN	Transmitter enable control (TXEN = low = power down mode; TXEN = high = normal operation mode).			
4	VSS	Ground connection for the transmit output amplifier.			
5	TXOUT	Transmitter output. This pin is an open collector and requires a pull-up inductor for bias/matching and a tapped capacitor for matching.			
6	VSS1	Ground connection for the transmit driver amplifier.			
7	VCC1	Nominal supply voltage for the transmit driver amplifier.			
8	MODIN	ASK modulation input. An external resistor R_{MODIN} to supply voltage is used to bias the entire transmit amplifier chain through this pin.			
9	VCC2	Nominal supply voltage for the VCO and PLL circuitry.			
10	VSS2	Ground connection for the PLL circuitry.			
11	NC	No connection.			
12	RES	Discounties and the WCO			
13	RES	Differential open collector VCO outputs.			
14	DO	Output of the charge pump. An R-C network from this pin to ground is used to establish the PLL bandwidth.			
15	LD	Lock detector output. This pin is used to set the threshold of the lock detect circuitry which enables or disables the transmit amplifier. A shunt capacitor should be used to set an R-C time constant with the on-chip series $1k\Omega$ resistor. The time constant should be set to approximately 15 times the reference period.			
16	SW	Prescaler modulus control input (SW = high = \div 64; SW = low = \div 128).			

Absolute Maximum Ratings

$$V_{SS}, V_{SS1}, V_{SS2} = 0V$$

Parameter	Rating	Unit
Supply voltage range	-0.3 to +3.6	V
Power-down voltage	-0.3 to $V_{\rm CC}$	V
MODIN voltage	-0.3 to +1.1	V
Operating ambient temperature	-40 to +85	°C
Storage temperature	-40 to +150	°C

Recommended Operating Conditions

$$V_{SS}, V_{SS1}, V_{SS2} = 0V$$

Parameter	Symbol		Unit		
i didilictei		min.	typ.	max.	Oiiit
Supply voltage range	V _{CC}	2.2	3.0	3.6	V
Operating temperature	T_A	-10	+25	+60	°C

Electrical Characteristics

 $(V_{CC} = 3V, V_{SS}, V_{SS1}, V_{SS2} = 0V, TXEN = high, T_A = 25^{\circ}C, and f_{RF} = 433.92MHz \ unless \ otherwise \ noted)$

Demonstra	C11	G IV	Value			TT'a
Parameter	Symbol	Condition	min.	typ.	max.	Unit
Power supply						
Supply voltage	V _{CC}		2.2	3.0	3.6	V
Total DC current (normal operation)	I _{CC}	50% duty cycle, 10kHz data applied to the MODIN pin (R _{MODIN} = 10kΩ)		10.5		mA
Total DC current (power-down mode)	$\mathbf{I}_{\mathrm{standby}}$	TXEN = low			1	μА
Overall						
RF input frequency range	f_{RF}		100		960	MHz
Modulation				ASK		
Modulation frequency	f_{MOD}				100	kHz
Output power	P _{OUT}	50Ω load	1	8		dBm
ON/OFF ratio				70		dB
PLL			•			
Prescaler divide ratio		$SW = high = \div 64$ $SW = low = \div 128$	64		128	
VCO gain	K _{vco}	Frequency and board layout dependent		20		MHz/V
Phase noise		10 KHz offset, 50 KHz loop BW		-80		dBc/Hz
rnase noise		100 KHz offset, 50 KHz loop BW		-90		dBc/Hz
2nd harmonic				-30		dBc
3rd harmonic				-40		dBc
Reference frequency				7		MHz
Crystal frequency spurs		50 KHz PLL loop BW		-50		dBc
Charge pump current	I _{CP}		-100		100	μΑ
Stand-by mode control						
Transmitter enable/disable voltage		TXEN = high = normal operation	Vcc – 0.3 V			V
. 3		TXEN = low = power-down mode			0.3	V
Turn-on time				1	2	ms
Turn-off time				1	2	ms

Functional Description

The SSTX4915 is a low-power ASK transmitter IC designed for applications operating within the frequency range of 100 to 960 MHz. In particular, it is intended for transmitter applications in 315/433 MHz band remote keyless entry and 868/915 MHz ISM-band systems. In addition, the SSTX4915 possesses a PLL-only mode which allows it to be simply used as a local oscillator source. The integrated voltage-controlled oscillator (VCO), phase/frequency detector, prescaler, and reference oscillator require only the addition of an external crystal to provide a complete phase-locked loop. In addition to the normal operation mode, the chip also includes an automatic lock-detect feature that disables the transmitter output when the PLL is out-of-lock.

Reference crystal oscillator

The OSCIN and OSCOUT inputs (pins 1 and 2) provide connections to an on-chip transistor which may be used to implement a Colpitts crystal oscillator. The Colpitts oscillator configuration is a low parts count topology which achieves reasonable phase noise performance. Optionally, an external signal may be accoupled into the OSCIN pin to provide a reference source. The OSCIN input drive level should be near 500 mV $_{pk-pk}$ to prevent overdriving the on-chip transistor in order to keep the phase noise and reference spurs to a minimum.

Voltage controlled oscillator

The VCO uses a tuned differential amplifier topology with the bases and collectors cross-coupled to provide positive feedback and the necessary 360° phase shift. A tuned circuit is connected to the open collector outputs and is comprised of both on-chip varactors and user-selectable off-chip inductors. The choice of inductor values determines the frequency band of operation.

Dual-modulus prescaler

A series of flip-flops divides the VCO frequency by either 64 or 128, depending upon the logic level of the SW input (pin 16). SW = high will select the \div 64 mode and SW = low will select the \div 128 mode. The divided-down signal is then applied to the phase/frequency detector where its phase/frequency is compared with the phase/frequency of the crystal reference.

Phase/frequency detector and charge pump

The phase/frequency detector (PFD) is implemented using the "tri-state comparator" topology while the charge pump (CP) consists of a current source and sink for charging and discharging the off-chip loop filter. When the VCO and reference inputs to the PFD are both phase- and frequency-locked, the CP output enters a high impedance state. Otherwise, the CP will either charge or discharge the loop filter.

Out-of-lock inhibit circuitry

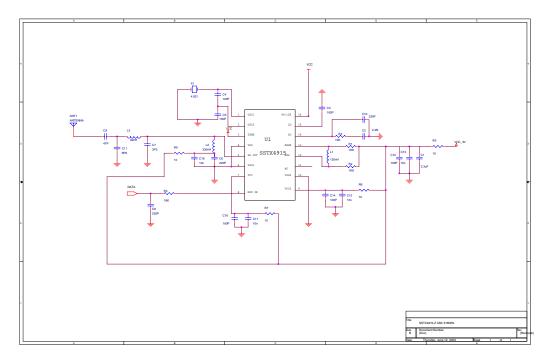
The out-of-lock inhibit circuitry is used to disable the transmitter output when the VCO is not locked to the reference oscillator and comply with regulatory limits during the unlocked condition. An off-chip shunt capacitor connected to the LD output (pin 15) is used to set an R-C time constant (together with an on-chip series 1 K. resistor.) This time constant should be set to be approximately 15 times the reference period.

Transmit amplifier chain

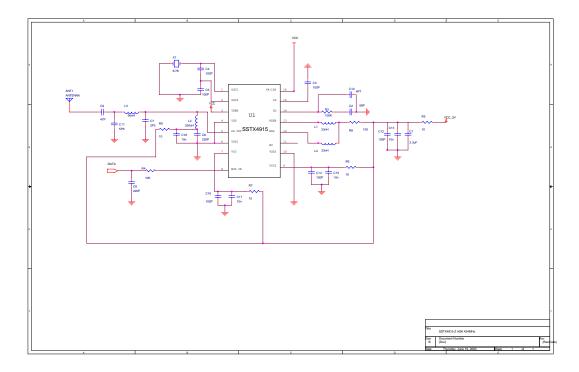
A transmit amplifier chain consists of a driver amplifier followed by an open collector output stage. The open collector TXOUT output (pin 5) requires an external pull-up inductor for bias. This inductor may be used as part of an L-C matching circuit for transforming the amplifier output impedance to that of an external loop antenna. To achieve optimum power-added efficiency, the peak-to-peak RF voltage swing at the TXOUT pin should be twice the supply voltage. Also, the output amplifier has its own ground pin (VSS) in order to improve isolation.

The transmitter chain is designed for amplitude-shift-keying/on-off keying (ASK/OOK), with the modulation data provided at the MODIN input (pin 8). When V $_{\rm MODIN}$ > 0.7 V, an output signal is transmitted, and when V $_{\rm MODIN}$ <0.7 V, no output signal is transmitted.

Operation modes

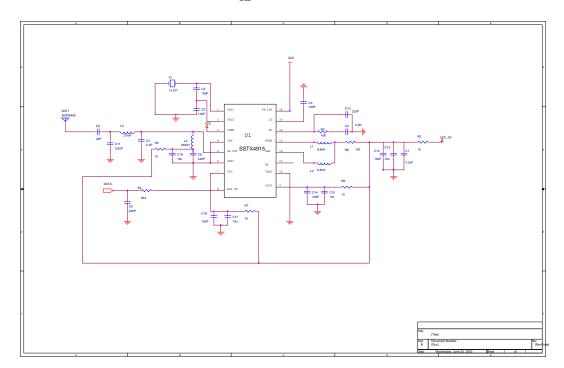

The table below summarizes the TX4915's three operating modes — power-down, PLL-only and transmit, which are controlled by the TXEN and MODIN inputs.

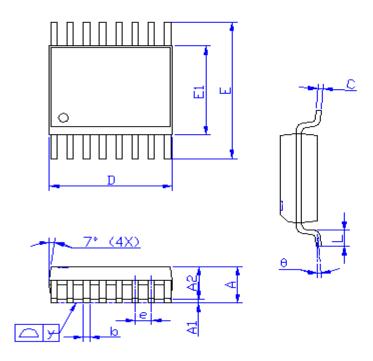
TXEN	MODIN	Operation Mode
L	L	Power-down
Н	L	PLL-only
Н	> 0.7 V	Transmit



Application Circuits

 $f_{RF} = 315 \text{ MHz}$


 $f_{RF} = 434 \text{ MHz}$


Application Circuits (cont.)

Package Dimensions

Symbol	Dimensions in mm			Dimensions in inches			
	min.	nom.	max.	min.	nom.	max.	
A	1.35	1.60	1.75	0.053	0.064	0.069	
A1	0.10	_	0.25	0.004	_	0.010	
A2	_	1.45	_	_	0.057	_	
b	0.20	0.25	0.30	0.008	0.010	0.012	
С	0.19	_	0.25	0.007	_	0.010	
D	4.80	_	5.00	0.189	_	0.197	
Е	5.80	_	6.20	0.228	_	0.244	
E1	3.80	_	4.00	0.150	_	0.157	
e	_	0.64	_	_	0.025	_	
L	0.40	_	1.27	0.016	_	0.050	
У	_	_	0.10	_	_	0.004	
θ	0°	_	8°	0°	_	8°	

Information furnished by Silicon Standard Corporation is believed to be accurate and reliable. However, Silicon Standard Corporation makes no guarantee or warranty, express or implied, as to the reliability, accuracy, timeliness or completeness of such information and assumes no responsibility for its use, or for infringement of any patent or other intellectual property rights of third parties that may result from its use. Silicon Standard reserves the right to make changes as it deems necessary to any products described herein for any reason, including without limitation enhancement in reliability, functionality or design. No license is granted, whether expressly or by implication, in relation to the use of any products described herein or to the use of any information provided herein, under any patent or other intellectual property rights of Silicon Standard Corporation or any third parties.